Probably the most famous invention of the great Heron of Alexandria (10 CE – 70 CE) was his aeolipile, a steam engine that worked on exactly the same principle as the great machines of the industrial revolution and many modern electricity-generating turbines.
His machine consisted of a water reservoir with a heat source located underneath, and copper tubing extended upwards from this, acting as the pivot for a rotating sphere. To the outside of the sphere, two nozzles were created from tubing bent out from the surface of this sphere, making an L-shape.
The principle behind the machine relied upon steam from the heated water rising through the copper tubing into the sphere. This steam escaped through the nozzles at high speed, generating thrust according to Newton’s 2nd and 3rd laws of motion, causing the sphere to rotate on its axis.
Simpler versions of Heron’s aeolipile dispensed with the boiler and simply heated the water in the sphere; this was much easier to build but would not operate for long before the water boiled away.
How does it Work?
This experiment shows one of the basic principles of physics, that for every action, there must be an equal and opposite action, and this simple principle lies at the root of modern society. Combustion engines, turbines, lawn sprinklers, and rockets are just some of the machines relying upon the principles shown by Heron.
Newton's Third Law states that every action has an equal and opposite reaction and, as water shoots out of the holes, it pushes back on the carton with equal force. A turbine is formed as the energy of the moving liquid is converted into rotational energy. This principle was well known to Heron of Alexandria (also known to us as Hero of Alexandria).
0 Comments